Uncountably many exotic $\mathbf{R}^4$'s in standard 4-space
نویسندگان
چکیده
منابع مشابه
Spaces of Uncountably Many Dimensions*
Riemann in his Habilitations Schrift of 1854 suggested the notion of ^-dimensional space (where n is a natural number) as an extension of the notion of three-dimensional euclidean space. Hubert extended the notion still further by defining a space of a countably infinite number of dimensions. Fréchetf in 1908 defined two other spaces of countably many dimensions, which he called D„ and J3W. Tyc...
متن کاملExtending Baire property by uncountably many sets
We prove that if ZFC is consistent so is ZFC + “for any sequence (An) of subsets of a Polish space 〈X, τ〉 there exists a separable metrizable topology τ ′ on X with B(X, τ) ⊆ B(X, τ ′), MGR(X, τ ′) ∩ B(X, τ) = MGR(X, τ) ∩B(X, τ) and An Borel in τ ′ for all n.” This is a category analogue of a theorem of Carlson on the possibility of extending Lebesgue measure to any countable collection of sets...
متن کاملUncountably Many Mildly Wild Non-wilder Arcs1
I. The basic example A0 (Figure 1). A regular normed projection of our basic example of a mildly wild non-Wilder arc is shown in Figure 1. (Using the methods of [4], one could easily give a precise description.) (A) Ao is not L.P.U. at p. The invariants of [7] will be used to show that the penetration index PiA0, p) of A0 at p is equal to 4. (For a definition of the penetration index see [l] an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1992
ISSN: 0022-040X
DOI: 10.4310/jdg/1214447810